background top icon
background center wave icon
background filled rhombus icon
background two lines icon
background stroke rhombus icon

Descărcați "The Surprising Truth About the Higgs Boson "Discovery" at CERN"

input logo icon
Coperta înregistrării audio
Așteptați puțin, pregătim linkuri pentru vizualizarea ușoară a video fără reclame și descărcarea acestuia.
console placeholder icon
Cuprins
|

Cuprins

0:00
God Particle Found!
1:18
What are "particles" really?
3:19
Why heavy particles are not stable
5:17
How do we make a Higgs using lighter particles?
6:48
Why the Higgs is so difficult to detect
8:35
How we really "detect" the Higgs
10:56
Most interesting part of the video
11:08
Special offer from Brilliant
12:26
How the Higgs was made at the LHC
Tag-uri video
|

Tag-uri video

particle physics
Higgs boson
Particle accelerator
LHC
large hadron collider
how was the higgs discovered
how are particles discovered
how was the higgs particle measured
higgs particle
what is the higgs particle
quantum mechanics
quantum physics
how the higgs boson was found
finding the higgs boson
was the higgs ever really seen
was the higgs ever observed
was the higgs ever measured
what is the higgs boson
the god particle
god particle discovery
higgsboson
lhc
Îl aveți deja instalat UDL Helper Puteți descărca video în 1 clic!
Instalat
pentru
Google Chrome

Descriere:

Go to https://brilliant.org/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription. TALK TO ME on Patreon: https://www.patreon.com/arvinash REFERENCES How Higgs gives mass: https://www.youtube.com/watch?v=R7dsACYTTXE Why the universe is LAZY: https://www.youtube.com/watch?v=pvPxCtrXT1c How Higgs was Discovered: https://home.cern/science/physics/higgs-boson/how Paper on implications of Higgs discovery: https://tinyurl.com/ykw786pp CHAPTERS 0:00 "God Particle Found!" 1:18 What are "particles" really? 3:19 Why heavy particles are not stable 5:17 How do we make a Higgs using lighter particles? 6:48 Why the Higgs is so difficult to detect 8:35 How we really "detect" the Higgs 10:56 Most interesting part of the video 11:08 Special offer from Brilliant 12:26 How the Higgs was made at the LHC SUMMARY In 2012, the Higgs boson (the God Particle) was discovered. It's responsible for giving mass to fundamental particles. But the scientists never measured the particle. So how can scientists claim a discovery without ever having seen or measured it? What is a measurement anyway? The Standard Model shows that all fundamental particles that we know of are an excitation in their own field. Since the Higgs particle has a mass of 125 GeV, you must add 125 GeV worth of energy in the Higgs Field to form a Higgs particle. This is a very high energy level, equivalent to the rest mass of about 244,000 electrons. Making a Higgs is not easy because heavy particles are not stable. They decay to lower mass particles, because the universe intrinsically favors lower mass/energy particles over higher mass particles. The Higgs particle being heavy is unstable and tends to decay into lighter particles. But mass is only part of the energy of the particle. The combination of rest mass and kinetic energy of ligher particles can add up to the mass of a heavy particle like the Higgs. This is the principle behind particle accelerators like the Large Hadron Collider at CERN in Geneva. The LHC actually accelerates protons to do this because it’s a bit easier than electrona since a proton is much heavier at around 1 GeV, so it needs less kinetic energy to create the Higgs particle. How do you detect the Higgs once it is made? You cannot detect it directly for two reasons. First, two protons collide with the same energy, but in opposite directions. The combined momentum is roughly zero. This means that the created Higgs boson will be roughly stationary in the particle beam. It’s difficult to detect something that doesn’t move because the detectors only picks up particles that fly away from the collision. Secondly, Its lifetime is incredibly short. It decays almost instantly. Thirdly, the Higgs is not a charged particle. Since we generally rely on some electromagnetic interaction to physically detect a particle, it’s not clear how you would detect it even if it could reach the detector. If all that is true, what did we actually “discover” if no one ever measured a Higgs? You don’t need to measure it to know that it’s there. Essentially, if you smash two protons together and get an event where the sum of the decay products adds up to the mass of the Higgs, then we can reasonably conclude that the event likely created a Higgs particle. But you might ask, what if the event created random interactions which just happened to yield a decay products equal to the Higgs mass? Yes, that could happen. But if you have many multiple measurements over a long period of time, then you can eliminate the possibility of just random interactions. And in the case of the 2012 announcement, this spike achieved 5 sigma significance, which is the gold standard in particle physics, for determining that a new particle was detected. It is thus as statistically significant discovery. And it turns out that in there are many other particles, that we also never actually directly measure, because of similar limitations. For example, the quarks and gluons that make up protons and neutrons, cannot because of the nature of the strong force, ever be directly detected. Yet, scientists still claim we discovered them. They can make this claim because the procedure of their discovery is similar to that of the Higgs. How is the Higgs Boson produced? The most prominent process used at the Large hadron collider is the gluon fusion process. First, two high energy gluons can be produced by smashing two high energy protons. These can, in some cases, turn into top quarks, and fuse together via a triangle loop. This loop represents top quark, and anti-top quark creation and annihilation. The energy of this annihilation can create a Higgs boson. This Higgs particle of course, as I stated earlier, almost instantly decays. So, what does it decay into? The Higgs decays to form very heavy bottom/anti-bottom quarks, which annihilates into two high energy photons. And the energy of these photons adds up to the mass of the Higgs. The photons is what we actually detect.

Pregătim opțiunile de descărcare

popular icon
Populare
hd icon
HD video
audio icon
Numai sunet
total icon
Toate formatele
* — Dacă video este redat într-o filă nouă, mergeți la acea filă, apoi faceți clic dreapta pe video și selectați „Salvați videoclipul ca...”
** — Un link conceput pentru redarea online În jucători specializați

Întrebări despre descărcarea videoclipului

mobile menu iconCum pot descărca un videoclip "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • Site-ul http://unidownloader.com/ este cel mai bun mod de a descărca un videoclip sau o piesă audio separată, dacă doriți să faceți acest lucru fără a instala programe și extensii.

  • Extensia UDL Helper este un buton convenabil care este integrat perfect în site-urile YouTube, Instagram și OK.ru pentru descărcarea rapidă a conținutului.

  • Programul UDL Client (pentru Windows) este cea mai puternică soluție care suportă peste 900 de site-uri web, rețele sociale și site-uri de găzduire video, precum și orice calitate video care este disponibilă în sursă.

  • UDL Lite este o modalitate foarte convenabilă de a accesa un site web de pe dispozitivul mobil. Cu ajutorul său, puteți descărca cu ușurință videoclipuri direct pe smartphone.

mobile menu iconCe format de video "The Surprising Truth About the Higgs Boson "Discovery" at CERN" ar trebui să aleg?mobile menu icon

  • Cele mai bune formate de calitate sunt FullHD (1080p), 2K (1440p), 4K (2160p) și 8K (4320p). Cu cât rezoluția ecranului dvs. este mai mare, cu atât mai mare ar trebui să fie calitatea video. Cu toate acestea, există și alți factori de luat în considerare: viteza de descărcare, cantitatea de spațiu liber și performanța dispozitivului în timpul redării.

mobile menu iconDe ce mi se blochează calculatorul atunci când încarc un videoclip "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • Browserul/computerul nu ar trebui să se blocheze complet! Dacă se întâmplă acest lucru, vă rugăm să raportați acest lucru cu un link către videoclip. Uneori, videoclipurile nu pot fi descărcate direct într-un format adecvat, așa că am adăugat posibilitatea de a converti fișierul în formatul dorit. În unele cazuri, acest proces poate utiliza în mod activ resursele computerului.

mobile menu iconCum pot descărca un videoclip "The Surprising Truth About the Higgs Boson "Discovery" at CERN" pe telefonul meu?mobile menu icon

  • Puteți descărca un videoclip pe smartphone-ul dvs. utilizând site-ul web sau aplicația PWA UDL Lite. De asemenea, este posibil să trimiteți un link de descărcare prin cod QR folosind extensia UDL Helper.

mobile menu iconCum pot descărca o piesă audio (muzică) în MP3 "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • Cea mai convenabilă modalitate este să utilizați programul UDL Client, care acceptă conversia videoclipurilor în format MP3. În unele cazuri, MP3 poate fi descărcat și prin intermediul extensiei UDL Helper.

mobile menu iconCum pot salva un cadru dintr-un videoclip "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • Această funcție este disponibilă în extensia UDL Helper. Asigurați-vă că "Show the video snapshot button" (Afișați butonul de instantaneu video) este bifat în setări. O pictogramă a camerei ar trebui să apară în colțul din dreapta jos al playerului, în stânga pictogramei "Setări". Atunci când faceți clic pe ea, cadrul curent din videoclip va fi salvat pe computer în format JPEG.

mobile menu iconCare este prețul tuturor acestor lucruri?mobile menu icon

  • Nu costă nimic. Serviciile noastre sunt absolut gratuite pentru toți utilizatorii. Nu există abonamente PRO, nu există restricții privind numărul sau lungimea maximă a videoclipurilor descărcate.