background top icon
background center wave icon
background filled rhombus icon
background two lines icon
background stroke rhombus icon

Baixar "The Surprising Truth About the Higgs Boson "Discovery" at CERN"

input logo icon
Arte da capa de áudio
Aguarde um momento, estamos preparando links para uma fácil visualização do vídeo sem anúncios e seu download.
console placeholder icon
Tabela de conteúdo
|

Tabela de conteúdo

0:00
God Particle Found!
1:18
What are "particles" really?
3:19
Why heavy particles are not stable
5:17
How do we make a Higgs using lighter particles?
6:48
Why the Higgs is so difficult to detect
8:35
How we really "detect" the Higgs
10:56
Most interesting part of the video
11:08
Special offer from Brilliant
12:26
How the Higgs was made at the LHC
Etiquetas de vídeo
|

Etiquetas de vídeo

particle physics
Higgs boson
Particle accelerator
LHC
large hadron collider
how was the higgs discovered
how are particles discovered
how was the higgs particle measured
higgs particle
what is the higgs particle
quantum mechanics
quantum physics
how the higgs boson was found
finding the higgs boson
was the higgs ever really seen
was the higgs ever observed
was the higgs ever measured
what is the higgs boson
the god particle
god particle discovery
higgsboson
lhc
Já tem instalado o UDL Helper Você pode baixar vídeo em um clique!
Instalado
para
Google Chrome

Descrição:

Go to https://brilliant.org/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription. TALK TO ME on Patreon: https://www.patreon.com/arvinash REFERENCES How Higgs gives mass: https://www.youtube.com/watch?v=R7dsACYTTXE Why the universe is LAZY: https://www.youtube.com/watch?v=pvPxCtrXT1c How Higgs was Discovered: https://home.cern/science/physics/higgs-boson/how Paper on implications of Higgs discovery: https://tinyurl.com/ykw786pp CHAPTERS 0:00 "God Particle Found!" 1:18 What are "particles" really? 3:19 Why heavy particles are not stable 5:17 How do we make a Higgs using lighter particles? 6:48 Why the Higgs is so difficult to detect 8:35 How we really "detect" the Higgs 10:56 Most interesting part of the video 11:08 Special offer from Brilliant 12:26 How the Higgs was made at the LHC SUMMARY In 2012, the Higgs boson (the God Particle) was discovered. It's responsible for giving mass to fundamental particles. But the scientists never measured the particle. So how can scientists claim a discovery without ever having seen or measured it? What is a measurement anyway? The Standard Model shows that all fundamental particles that we know of are an excitation in their own field. Since the Higgs particle has a mass of 125 GeV, you must add 125 GeV worth of energy in the Higgs Field to form a Higgs particle. This is a very high energy level, equivalent to the rest mass of about 244,000 electrons. Making a Higgs is not easy because heavy particles are not stable. They decay to lower mass particles, because the universe intrinsically favors lower mass/energy particles over higher mass particles. The Higgs particle being heavy is unstable and tends to decay into lighter particles. But mass is only part of the energy of the particle. The combination of rest mass and kinetic energy of ligher particles can add up to the mass of a heavy particle like the Higgs. This is the principle behind particle accelerators like the Large Hadron Collider at CERN in Geneva. The LHC actually accelerates protons to do this because it’s a bit easier than electrona since a proton is much heavier at around 1 GeV, so it needs less kinetic energy to create the Higgs particle. How do you detect the Higgs once it is made? You cannot detect it directly for two reasons. First, two protons collide with the same energy, but in opposite directions. The combined momentum is roughly zero. This means that the created Higgs boson will be roughly stationary in the particle beam. It’s difficult to detect something that doesn’t move because the detectors only picks up particles that fly away from the collision. Secondly, Its lifetime is incredibly short. It decays almost instantly. Thirdly, the Higgs is not a charged particle. Since we generally rely on some electromagnetic interaction to physically detect a particle, it’s not clear how you would detect it even if it could reach the detector. If all that is true, what did we actually “discover” if no one ever measured a Higgs? You don’t need to measure it to know that it’s there. Essentially, if you smash two protons together and get an event where the sum of the decay products adds up to the mass of the Higgs, then we can reasonably conclude that the event likely created a Higgs particle. But you might ask, what if the event created random interactions which just happened to yield a decay products equal to the Higgs mass? Yes, that could happen. But if you have many multiple measurements over a long period of time, then you can eliminate the possibility of just random interactions. And in the case of the 2012 announcement, this spike achieved 5 sigma significance, which is the gold standard in particle physics, for determining that a new particle was detected. It is thus as statistically significant discovery. And it turns out that in there are many other particles, that we also never actually directly measure, because of similar limitations. For example, the quarks and gluons that make up protons and neutrons, cannot because of the nature of the strong force, ever be directly detected. Yet, scientists still claim we discovered them. They can make this claim because the procedure of their discovery is similar to that of the Higgs. How is the Higgs Boson produced? The most prominent process used at the Large hadron collider is the gluon fusion process. First, two high energy gluons can be produced by smashing two high energy protons. These can, in some cases, turn into top quarks, and fuse together via a triangle loop. This loop represents top quark, and anti-top quark creation and annihilation. The energy of this annihilation can create a Higgs boson. This Higgs particle of course, as I stated earlier, almost instantly decays. So, what does it decay into? The Higgs decays to form very heavy bottom/anti-bottom quarks, which annihilates into two high energy photons. And the energy of these photons adds up to the mass of the Higgs. The photons is what we actually detect.

Preparando opções de download

popular icon
Populares
hd icon
Vídeo HD
audio icon
Apenas som
total icon
Todos os formatos
* — Se o vídeo estiver sendo reproduzido em uma nova aba, vá até ele, então clique com o botão direito no vídeo e escolha "Salvar vídeo como..."
** — Este link é destinado à reprodução online em players dedicados

Perguntas sobre o download de vídeos

mobile menu iconComo posso baixar o vídeo "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • O site http://unidownloader.com é a melhor maneira de baixar um vídeo ou uma faixa de áudio separada se você quiser fazer isso sem instalar programas e extensões.

  • A extensão UDL Helper é um botão conveniente que é perfeitamente integrado aos sites do YouTube, Instagram e OK.ru para download rápido de conteúdo.

  • O programa UDL Client (para Windows) é a solução mais poderosa que oferece suporte a mais de 900 sites, redes sociais e sites de hospedagem de vídeo, bem como a qualquer qualidade de vídeo disponível na fonte.

  • O UDL Lite é uma maneira realmente conveniente de acessar um site a partir do seu dispositivo móvel. Com sua ajuda, você pode facilmente baixar vídeos diretamente para seu smartphone.

mobile menu iconQual formato de vídeo "The Surprising Truth About the Higgs Boson "Discovery" at CERN" devo escolher?mobile menu icon

  • Os formatos de melhor qualidade são FullHD (1080p), 2K (1440p), 4K (2160p) e 8K (4320p). Quanto maior for a resolução da sua tela, maior deverá ser a qualidade do vídeo. No entanto, há outros fatores a serem considerados: velocidade de download, quantidade de espaço livre e desempenho do dispositivo durante a reprodução.

mobile menu iconPor que meu computador trava ao carregar um vídeo "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • O navegador/computador não deve congelar completamente! Se isso acontecer, informe o fato com um link para o vídeo. Às vezes, os vídeos não podem ser baixados diretamente em um formato adequado, por isso adicionamos a capacidade de converter o arquivo para o formato desejado. Em alguns casos, esse processo pode usar ativamente os recursos do computador.

mobile menu iconComo posso baixar o vídeo "The Surprising Truth About the Higgs Boson "Discovery" at CERN" para o meu celular?mobile menu icon

  • Você pode baixar um vídeo para seu smartphone usando o site ou o aplicativo PWA UDL Lite. Também é possível enviar um link de download via código QR usando a extensão UDL Helper.

mobile menu iconComo posso fazer download de uma faixa de áudio (música) para MP3 "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • A maneira mais conveniente é usar o programa UDL Client, que suporta a conversão de vídeo para o formato MP3. Em alguns casos, o download de MP3 também pode ser feito por meio da extensão UDL Helper.

mobile menu iconComo posso salvar um quadro de um vídeo "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • Esse recurso está disponível na extensão UDL Helper. Certifique-se de que a opção "Show the video snapshot button" esteja marcada nas configurações. Um ícone de câmera deve aparecer no canto inferior direito do player, à esquerda do ícone "Settings" (Configurações). Quando você clicar nele, o quadro atual do vídeo será salvo em seu computador no formato JPEG.

mobile menu iconQual é o preço de todo esse material?mobile menu icon

  • Não custa nada. Nossos serviços são totalmente gratuitos para todos os usuários. Não há assinaturas PRO, nem restrições quanto ao número ou à duração máxima dos vídeos baixados.