background top icon
background center wave icon
background filled rhombus icon
background two lines icon
background stroke rhombus icon

Download "The Surprising Truth About the Higgs Boson "Discovery" at CERN"

input logo icon
Table of contents
|

Table of contents

0:00
God Particle Found!
1:18
What are "particles" really?
3:19
Why heavy particles are not stable
5:17
How do we make a Higgs using lighter particles?
6:48
Why the Higgs is so difficult to detect
8:35
How we really "detect" the Higgs
10:56
Most interesting part of the video
11:08
Special offer from Brilliant
12:26
How the Higgs was made at the LHC
Video tags
|

Video tags

particle physics
Higgs boson
Particle accelerator
LHC
large hadron collider
how was the higgs discovered
how are particles discovered
how was the higgs particle measured
higgs particle
what is the higgs particle
quantum mechanics
quantum physics
how the higgs boson was found
finding the higgs boson
was the higgs ever really seen
was the higgs ever observed
was the higgs ever measured
what is the higgs boson
the god particle
god particle discovery
higgsboson
lhc
You already have UDL Helper installed You can download video in 1 click!
Installed
for
Google Chrome

Description:

Go to https://brilliant.org/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription. TALK TO ME on Patreon: https://www.patreon.com/arvinash REFERENCES How Higgs gives mass: https://www.youtube.com/watch?v=R7dsACYTTXE Why the universe is LAZY: https://www.youtube.com/watch?v=pvPxCtrXT1c How Higgs was Discovered: https://home.cern/science/physics/higgs-boson/how Paper on implications of Higgs discovery: https://tinyurl.com/ykw786pp CHAPTERS 0:00 "God Particle Found!" 1:18 What are "particles" really? 3:19 Why heavy particles are not stable 5:17 How do we make a Higgs using lighter particles? 6:48 Why the Higgs is so difficult to detect 8:35 How we really "detect" the Higgs 10:56 Most interesting part of the video 11:08 Special offer from Brilliant 12:26 How the Higgs was made at the LHC SUMMARY In 2012, the Higgs boson (the God Particle) was discovered. It's responsible for giving mass to fundamental particles. But the scientists never measured the particle. So how can scientists claim a discovery without ever having seen or measured it? What is a measurement anyway? The Standard Model shows that all fundamental particles that we know of are an excitation in their own field. Since the Higgs particle has a mass of 125 GeV, you must add 125 GeV worth of energy in the Higgs Field to form a Higgs particle. This is a very high energy level, equivalent to the rest mass of about 244,000 electrons. Making a Higgs is not easy because heavy particles are not stable. They decay to lower mass particles, because the universe intrinsically favors lower mass/energy particles over higher mass particles. The Higgs particle being heavy is unstable and tends to decay into lighter particles. But mass is only part of the energy of the particle. The combination of rest mass and kinetic energy of ligher particles can add up to the mass of a heavy particle like the Higgs. This is the principle behind particle accelerators like the Large Hadron Collider at CERN in Geneva. The LHC actually accelerates protons to do this because it’s a bit easier than electrona since a proton is much heavier at around 1 GeV, so it needs less kinetic energy to create the Higgs particle. How do you detect the Higgs once it is made? You cannot detect it directly for two reasons. First, two protons collide with the same energy, but in opposite directions. The combined momentum is roughly zero. This means that the created Higgs boson will be roughly stationary in the particle beam. It’s difficult to detect something that doesn’t move because the detectors only picks up particles that fly away from the collision. Secondly, Its lifetime is incredibly short. It decays almost instantly. Thirdly, the Higgs is not a charged particle. Since we generally rely on some electromagnetic interaction to physically detect a particle, it’s not clear how you would detect it even if it could reach the detector. If all that is true, what did we actually “discover” if no one ever measured a Higgs? You don’t need to measure it to know that it’s there. Essentially, if you smash two protons together and get an event where the sum of the decay products adds up to the mass of the Higgs, then we can reasonably conclude that the event likely created a Higgs particle. But you might ask, what if the event created random interactions which just happened to yield a decay products equal to the Higgs mass? Yes, that could happen. But if you have many multiple measurements over a long period of time, then you can eliminate the possibility of just random interactions. And in the case of the 2012 announcement, this spike achieved 5 sigma significance, which is the gold standard in particle physics, for determining that a new particle was detected. It is thus as statistically significant discovery. And it turns out that in there are many other particles, that we also never actually directly measure, because of similar limitations. For example, the quarks and gluons that make up protons and neutrons, cannot because of the nature of the strong force, ever be directly detected. Yet, scientists still claim we discovered them. They can make this claim because the procedure of their discovery is similar to that of the Higgs. How is the Higgs Boson produced? The most prominent process used at the Large hadron collider is the gluon fusion process. First, two high energy gluons can be produced by smashing two high energy protons. These can, in some cases, turn into top quarks, and fuse together via a triangle loop. This loop represents top quark, and anti-top quark creation and annihilation. The energy of this annihilation can create a Higgs boson. This Higgs particle of course, as I stated earlier, almost instantly decays. So, what does it decay into? The Higgs decays to form very heavy bottom/anti-bottom quarks, which annihilates into two high energy photons. And the energy of these photons adds up to the mass of the Higgs. The photons is what we actually detect.

Preparing download options

popular icon
Popular
hd icon
HD video
audio icon
Only sound
total icon
All
* — If the video is playing in a new tab, go to it, then right-click on the video and select "Save video as..."
** — Link intended for online playback in specialized players

Questions about downloading video

mobile menu iconHow can I download "The Surprising Truth About the Higgs Boson "Discovery" at CERN" video?mobile menu icon

  • http://unidownloader.com/ website is the best way to download a video or a separate audio track if you want to do without installing programs and extensions.

  • The UDL Helper extension is a convenient button that is seamlessly integrated into YouTube, Instagram and OK.ru sites for fast content download.

  • UDL Client program (for Windows) is the most powerful solution that supports more than 900 websites, social networks and video hosting sites, as well as any video quality that is available in the source.

  • UDL Lite is a really convenient way to access a website from your mobile device. With its help, you can easily download videos directly to your smartphone.

mobile menu iconWhich format of "The Surprising Truth About the Higgs Boson "Discovery" at CERN" video should I choose?mobile menu icon

  • The best quality formats are FullHD (1080p), 2K (1440p), 4K (2160p) and 8K (4320p). The higher the resolution of your screen, the higher the video quality should be. However, there are other factors to consider: download speed, amount of free space, and device performance during playback.

mobile menu iconWhy does my computer freeze when loading a "The Surprising Truth About the Higgs Boson "Discovery" at CERN" video?mobile menu icon

  • The browser/computer should not freeze completely! If this happens, please report it with a link to the video. Sometimes videos cannot be downloaded directly in a suitable format, so we have added the ability to convert the file to the desired format. In some cases, this process may actively use computer resources.

mobile menu iconHow can I download "The Surprising Truth About the Higgs Boson "Discovery" at CERN" video to my phone?mobile menu icon

  • You can download a video to your smartphone using the website or the PWA application UDL Lite. It is also possible to send a download link via QR code using the UDL Helper extension.

mobile menu iconHow can I download an audio track (music) to MP3 "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • The most convenient way is to use the UDL Client program, which supports converting video to MP3 format. In some cases, MP3 can also be downloaded through the UDL Helper extension.

mobile menu iconHow can I save a frame from a video "The Surprising Truth About the Higgs Boson "Discovery" at CERN"?mobile menu icon

  • This feature is available in the UDL Helper extension. Make sure that "Show the video snapshot button" is checked in the settings. A camera icon should appear in the lower right corner of the player to the left of the "Settings" icon. When you click on it, the current frame from the video will be saved to your computer in JPEG format.

mobile menu iconWhat's the price of all this stuff?mobile menu icon

  • It costs nothing. Our services are absolutely free for all users. There are no PRO subscriptions, no restrictions on the number or maximum length of downloaded videos.